Refine Your Search

Author

Search Results

Technical Paper

Pediatric Head Contours and Inertial Properties for ATD Design

2010-11-03
2010-22-0009
Child head trauma in the United States is responsible for 30% of all childhood injury deaths with costs estimated at $10 billion per year. The common tools for studying this problem are the child anthropomorphic test devices (ATDs). The headform sizes and structural properties of child ATDs are based on various anthropometric studies and scaled Hybrid III mass and center of gravity (CG) properties. The goals of this study were to produce pediatric head and skull contours, provide estimates of pediatric head mass, mass moment of inertia and CG locations, and compare the head contours with the current child ATD head designs. To that end, computer tomography (CT) scans from one hundred eighty-five children in twelve age groups were analyzed to develop three-dimensional head and skull contours. The contours were averaged to estimate head and skull contours for children aged 1 month to 10 years. Inertial properties were estimated from a small sample of post-mortem human subjects (PMHSs).
Technical Paper

Rationale for and Dimensions of Impact Surfaces for Biofidelity Tests of Different Sizes of Frontal and Side Impact Dummies

2010-11-03
2010-22-0002
The biofidelity impact response corridors that were used to develop the Hybrid III family of dummies were established by scaling the various biofidelity corridors that were defined for the Hybrid III mid-size, adult male dummy. Scaling ratios for the responses of force, moment, acceleration, velocity, deflection, angle, stiffness and time were developed using dimensions and masses that were prescribed for the dummies. In addition, an elastic modulus ratio for bone was used to account for the differences between child and adult bone elastic properties. A similar method is being used by ISO/TC22/SC12/WG 5 to develop biofidelity guidelines for a family of side impact dummies based on scaling the biofidelity impact response corridors that are prescribed for WorldSID, a mid-size, adult male dummy.
Technical Paper

Age-Specific Injury Risk Curves for Distributed, Anterior Thoracic Loading of Various Sizes of Adults Based on Sternal Deflections

2016-11-07
2016-22-0001
Injury Risk Curves are developed from cadaver data for sternal deflections produced by anterior, distributed chest loads for a 25, 45, 55, 65 and 75 year-old Small Female, Mid-Size Male and Large Male based on the variations of bone strengths with age. These curves show that the risk of AIS ≥ 3 thoracic injury increases with the age of the person. This observation is consistent with NASS data of frontal accidents which shows that older unbelted drivers have a higher risk of AIS ≥ 3 chest injury than younger drivers.
Technical Paper

ES-2 Dummy Biomechanical Responses

2002-11-11
2002-22-0018
This technical paper presents the results of biomechanical testing conducted on the ES-2 dummy by the Occupant Safety Research Partnership and Transport Canada. The ES-2 is a production dummy, based on the EuroSID-1 dummy, that was modified to further improve testing capabilities as recommended by users of the EuroSID-1 dummy. Biomechanical response data were obtained by completing a series of drop, pendulum, and sled tests that are outlined in the International Organization of Standardization Technical Report 9790 that describes biofidelity requirements for the midsize adult male side impact dummy. A few of the biofidelity tests were conducted on both sides of the dummy to evaluate the symmetry of its responses. Full vehicle crash tests were conducted to verify if the changes in the EuroSID-1, resulting in the ES-2 design, did improve the dummy's testing capability. In addition to the biofidelity testing, the ES-2 dummy repeatability, reproducibility and durability are discussed.
Technical Paper

Guidelines for Assessing the Biofidelity of Side Impact Dummies of Various Sizes and Ages

2002-11-11
2002-22-0016
The Human Mechanical Simulation Subcommittee of the Human Biomechanics and Simulation Standards Committee of the Society of Automotive Engineers took on the task of defining test procedures and associated response guidelines to be used to assess the level of biofidelity of side impact dummies that are being developed. This paper describes the results of their efforts. Guidelines are provided for assessing the levels of biofidelity of dummies that represent 6-, 12-, and 18-month-old infants, 3-, 6-, and 10-year-old children, and of dummies that represent a small female, midsize male and large male adults. These guidelines were developed by normalizing the side impact biofidelity guidelines that were established by the International Standards Organization for the head, neck, shoulder, thorax, abdomen and pelvis of the midsize adult male.
X